
STATE OF SOFT WARE SECURIT Y

Open Source Edition

 Introduction + Key Findings 02

 Chapter 1 05 Open Source Library Usage
 07 Open source library usage is very skewed
 08 Core libraries are almost always included
 10 Let’s talk about JavaScript
 13 Libraries — very numerous — many versions — wow
 14 Dependency types

 Chapter 2 16 Flaws in Open Source Libraries
 18 Flaw prevalence in libraries by language
 20 Are certain types of flaws more prevalent than others?
 22 Prevalence of the OWASP top flaws by language
 24 Libraries with public proof-of-concept exploits
 26 OWASP and exploitability

 Chapter 3 27 Implications of Library Flaws on Applications
 29 Applications with flaws in open source libraries
 30 Do more libraries inevitability mean more problems?
 32 The most concerning flaws are a rare breed
 34 Relative prevalence of flaws by OWASP category

 Chapter 4 35 Options for Managing Library Security Flaws
 37 Most fixes are minor
 38 Fixes are present for the scariest OWASP flaws
 39 A silver lining

 Conclusion + Recommendations 40

Contents

02 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Introduction +
Key Findings

03STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

 Our long-running
State of Software
Security series
has mapped the
uncharted areas in
several directions,
to the point that
it’s clear there
is no simply saying
“write better
code, developers!”

Application security is
one of the great frontiers
in information security.

1 Credit to Kymberlee Price for introducing us to this analogy,
applied to risk management at SIRAcon 2018.

Apart from the code that is authored by developers,
virtually no modern application can avoid including
open source libraries that provide functionality that
would be extremely tedious to write from scratch.

Whether we’re looking at a relatively common
library with a rich feature set, such as OpenSSL, or
a four line JavaScript library that provides backward
compatibility (yes, we’re looking at you, isarray), all
of this imported code represents functionality that
your developers did not author, but becomes code
you have to manage. That free puppy1 that you adopt
still needs to be fed, walked, and taken to the vet.

WHAT FOLLOWS IS AN EXAMINATION OF THAT
PROVERBIAL FREE PUPPY:

+
+
+

+

How are open source libraries actually
getting used?

What type of flaws are lurking under
those appealing software licenses?

Do developers pick safe libraries with
few security flaws or are they looking
for features?

And finally, what can developers do to
maximize their access to this functionality
without burdening themselves — and their
users — with security debt?

04 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

2 For more information on the extremely popular OWASP Top Ten project, see owasp.org/www-project-top-ten/.

 TO ANSWER THESE QUESTIONS:

We’ve turned to the Veracode scanning
platform database of over 85,000
applications. Each of these applications
has been reviewed for its component
libraries, accounting for over 351,000
unique external libraries. We then
sliced and diced this data by language,
flaw type, dependency, and even
whether there are known exploits
for their flaws.

85,000
351,000

APPLICATIONS

UNIQUE
EXTERNAL
LIBRARIES

+
COMMON LIBRARIES

There are a small number
of libraries that are almost
always found in applications.

The most commonly included
libraries are present in over
75 percent of applications
for each language!

+
MINOR UPDATES

Fixing most library-introduced
flaws in most applications can
be accomplished with only a
minor version update.

Major library upgrades are not
usually required!

+
ACCESS CONTROL

Among the OWASP Top Ten2
flaws, weaknesses around access
control are the most common.

This weakness represents over
25 percent of all flaws.

+
TOP FLAW CATEGORIES

These top four categories of
flaws found in libraries represent
75 percent of all flaws:

• Access control
• Cross-Site Scripting
• Sensitive data exposure
• Injection

+
TRANSITIVE DEPENDENCIES

Some language ecosystems
tend to pull in many more
transitive dependencies
than others.

Languages that have the largest
amount of attack surface
introduced from transitively
included dependencies:

• JavaScript
• Ruby
• PHP

+
FLAWED PHP LIBRARIES

Including any given PHP
library has a greater than
50 percent chance of bringing
a security flaw along with it.

HERE ARE SOME OF THE THINGS WE FOUND:

https://owasp.org/www-project-top-ten/

05STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Open Source
Library Usage
07 Open source library usage is very skewed
08 Core libraries are almost always included
10 Let’s talk about JavaScript
13 Libraries — very numerous — many versions — wow
14 Dependency types

1Chapter 1

2 For more information on the extremely popular OWASP Top Ten project, see owasp.org/www-project-top-ten/.

https://owasp.org/www-project-top-ten/

06 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Some of them
want to use you
Some of them want
to get used by you.
Eurythmics, “Sweet Dreams
(Are Made of This)”

We wouldn’t go so far as to say that libraries
have their own wants and dreams, but it is
true that application developers and library
developers come together with their own desires.
These sometimes overlap and sometimes differ.
It’s where the incentives for both developer
communities fail to align that users may bear
the price of insecure software.

Let’s examine some questions, focusing on
the specific quantity, types, and versions of
libraries applications are using. This will give us
a baseline to understand when certain findings
stand out later. We can’t hit the vocal notes of
Annie Lennox, but we do plan on giving some
sweet data visualizations!

“

07STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

1 22

2 49

3 69

2 192

4 94

14 137

66 1.4k

4

13

16

21

34

43
3 195

63

34 1.4k
283

377

Swift

Go

Python

.NET

PHP

Java

Ruby

Multiple

JavaScript

1 10 100 1,000
Libraries per application

 The number of external libraries found in any given application varies quite
a bit depending on the language in which the application is being developed.
This segregation by language is a theme we’ll see throughout this report,
so let’s spend some time getting up to speed on this right away.

Open source library usage
is very skewed

Figure 1 Open source library usage

10th Percentile Geometric Mean 90th Percentile

JAVASCRIPT

Most of the JavaScript applications in our data set
have hundreds of dependencies, with the dependency
count reaching over 1,000 different libraries in some
applications. While that number may shock you, keep in
mind that the JavaScript community has a propensity to
package up very small units of functionality — a point
on which we’ll have more to say later. This means that
JavaScript has a vast number of very tiny libraries.

GO AND SWIFT

In contrast, Go and Swift tend to include only a few
dozen libraries at most, which may be a function of
their less developed and smaller ecosystems.

PYTHON

Python’s ranking near the bottom in the number
of included libraries surprised us, given our personal
experience as Python developers. While the most
popular Python package manager PyPi has roughly
1/5th of the number of packages found in the most
popular JavaScript repository npm (221k vs 1.2M), most
Python applications have only 1/100th of the number
of libraries found in a typical JavaScript application.

08 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

x/net
52.0%

x/sys
42.5%

yaml.v2
42.3%

pkg/errors
40.4%

davecgh/go-spew
38.8%

golang/protobuf
38.6%

x/text
37.6%

stretchr/testify
32.8%

pmezard/go-di�ib
32.1%

x/crypto
31.6%

Go
slf4j-api
75.2%

jackson-annotations
68.0%

jackson-core
67.6%

jackson-databind
66.8%

commons-codec
62.7%

spring-beans
60.5%

spring-context
59.7%

guava
58.7%

commons-logging
58.4%

spring-expression
57.9%

Java
inherits
92.3%

debug
89.8%

ms
89.5%

lodash
87.9%

safe-bu�er
86.7%

core-util-is
86.3%

isarray
86.2%

minimist
85.8%

once
83.9%

wrappy
83.7%

JavaScript
newtonsoft.json

52.7%

sys.runtime.compilerservices.unsafe
26.7%

MS.web.infrastructure
24.7%

MS.codeanalysis.csharp
24.1%

sys.collections.immutable
23.3%

MS.ext.dependencyinjection.abstractions
22.5%

MS.ext.primitives
22.1%

sys.text.encoding.codepages
22.1%

MS.ext.logging.abstractions
22.0%

sys.identitymodel.tokens.jwt
21.6%

.NET
log

76.4%

75.0%

74.8%

74.8%

74.7%

74.6%

74.6%

74.6%

74.1%

instantiator

php-token-stream

php-timer

php-text-template

phpunit

php-code-coverage

php-file-iterator

di�

version
74.1%

PHP
six

requests

idna

urllib3

certifi

chardet

python_dateutil

pytz

setuptools

markupsafe

79.5%

65.9%

65.2%

62.0%

59.6%

57.7%

47.0%

42.9%

41.2%

37.9%

Python
rake

76.6%

json
72.0%

multi_json
69.3%

addressable
68.1%

i18n
67.8%

tzinfo
67.4%

activesupport
66.0%

minitest
64.4%

thor
64.2%

rack
64.1%

Ruby

29.6%

27.7%

27.2%

26.2%

24.9%

19.8%

19.5%

19.3%

PubNub

Fabric

CocoaLumberjack

Crashlytics

AFNetworking

FirebaseCore

FirebaseInstanceID

FirebaseAnalytics

SwiftLint
18.5%

nanopb
17.5%

Swift

10

9

8

7

6

5

4

3

2

1

Ra
nk

10

9

8

7

6

5

4

3

2

1

Ra
nk

Percent of applications using library Percent of applications using library

40%20% 80%60% 40%20% 80%60%

Core libraries are almost
always included

Figure 2 Most popular libraries by language

 With a rich ecosystem,
it’s natural that some
libraries win out in
the marketplace of
ideas and become more
popular than others.

These superstars of the open source world represent the breakthroughs
that become fundamental to the way applications are typically built in their
language ecosystems. Wonder who is on these all-star lists? Look no further
than Figure 2, where we examine the 10 most commonly included libraries for
each language along with the percentage of the applications in that language
in which these whales3 can be found.

3 Our use of a term from gambling (en.wikipedia.org/wiki/High_roller) is deliberate here. Through use
of data, you can beat the odds and have a more rational approach to information security.

https://en.wikipedia.org/wiki/High_roller

09STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

x/net
52.0%

x/sys
42.5%

yaml.v2
42.3%

pkg/errors
40.4%

davecgh/go-spew
38.8%

golang/protobuf
38.6%

x/text
37.6%

stretchr/testify
32.8%

pmezard/go-di�ib
32.1%

x/crypto
31.6%

Go
slf4j-api
75.2%

jackson-annotations
68.0%

jackson-core
67.6%

jackson-databind
66.8%

commons-codec
62.7%

spring-beans
60.5%

spring-context
59.7%

guava
58.7%

commons-logging
58.4%

spring-expression
57.9%

Java
inherits
92.3%

debug
89.8%

ms
89.5%

lodash
87.9%

safe-bu�er
86.7%

core-util-is
86.3%

isarray
86.2%

minimist
85.8%

once
83.9%

wrappy
83.7%

JavaScript
newtonsoft.json

52.7%

sys.runtime.compilerservices.unsafe
26.7%

MS.web.infrastructure
24.7%

MS.codeanalysis.csharp
24.1%

sys.collections.immutable
23.3%

MS.ext.dependencyinjection.abstractions
22.5%

MS.ext.primitives
22.1%

sys.text.encoding.codepages
22.1%

MS.ext.logging.abstractions
22.0%

sys.identitymodel.tokens.jwt
21.6%

.NET
log

76.4%

75.0%

74.8%

74.8%

74.7%

74.6%

74.6%

74.6%

74.1%

instantiator

php-token-stream

php-timer

php-text-template

phpunit

php-code-coverage

php-file-iterator

di�

version
74.1%

PHP
six

requests

idna

urllib3

certifi

chardet

python_dateutil

pytz

setuptools

markupsafe

79.5%

65.9%

65.2%

62.0%

59.6%

57.7%

47.0%

42.9%

41.2%

37.9%

Python
rake

76.6%

json
72.0%

multi_json
69.3%

addressable
68.1%

i18n
67.8%

tzinfo
67.4%

activesupport
66.0%

minitest
64.4%

thor
64.2%

rack
64.1%

Ruby

29.6%

27.7%

27.2%

26.2%

24.9%

19.8%

19.5%

19.3%

PubNub

Fabric

CocoaLumberjack

Crashlytics

AFNetworking

FirebaseCore

FirebaseInstanceID

FirebaseAnalytics

SwiftLint
18.5%

nanopb
17.5%

Swift

10

9

8

7

6

5

4

3

2

1

Ra
nk

10

9

8

7

6

5

4

3

2

1

Ra
nk

Percent of applications using library Percent of applications using library

40%20% 80%60% 40%20% 80%60%

THE TAKEAWAY

Many languages have libraries that are almost a given
for inclusion in an application. JavaScript and Python,
in particular, have several core libraries that are likely
to be in use for any given application.

Here, we see that even with the huge number of
JavaScript libraries both available and in use, JavaScript’s
top libraries are present in more applications. In fact, all
languages apart from Swift have at least one library that
is included in over half of the applications scanned.

10 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

x/net

52.0%

x/sys

42.5%

yaml.v2

42.3%

pkg/errors

40.4%

davecgh/go-spew

38.8%

golang/protobuf

38.6%

x/text

37.6%

stretchr/testify

32.8%

pmezard/go-di�ib

32.1%

x/crypto

31.6%

Go

slf4j-api

75.2%

jackson-annotations

68.0%

jackson-core

67.6%

jackson-databind

66.8%

commons-codec

62.7%

spring-beans

60.5%

spring-context

59.7%

guava

58.7%

commons-logging

58.4%

spring-expression

57.9%

Java

inherits

92.3%

debug

89.8%

ms

89.5%

lodash

87.9%

safe-bu�er

86.7%

core-util-is

86.3%

isarray

86.2%

minimist

85.8%

once

83.9%

wrappy

83.7%

JavaScript

newtonsoft.json

52.7%

sys.runtime.compilerservices.unsafe

26.7%

MS.web.infrastructure

24.7%

MS.codeanalysis.csharp

24.1%

sys.collections.immutable

23.3%

MS.ext.dependencyinjection.abstractions

22.5%

MS.ext.primitives

22.1%

sys.text.encoding.codepages

22.1%

MS.ext.logging.abstractions

22.0%

sys.identitymodel.tokens.jwt

21.6%

.NET

10

9

8

7

6

5

4

3

2

1

Ra
nk

Percent of applications using library

40%20% 80%60%

Let’s talk about JavaScript
 JavaScript as a language has some

characteristics that set it apart
several times in this study.

11STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

x/net

52.0%

x/sys

42.5%

yaml.v2

42.3%

pkg/errors

40.4%

davecgh/go-spew

38.8%

golang/protobuf

38.6%

x/text

37.6%

stretchr/testify

32.8%

pmezard/go-di�ib

32.1%

x/crypto

31.6%

Go

slf4j-api

75.2%

jackson-annotations

68.0%

jackson-core

67.6%

jackson-databind

66.8%

commons-codec

62.7%

spring-beans

60.5%

spring-context

59.7%

guava

58.7%

commons-logging

58.4%

spring-expression

57.9%

Java

inherits

92.3%

debug

89.8%

ms

89.5%

lodash

87.9%

safe-bu�er

86.7%

core-util-is

86.3%

isarray

86.2%

minimist

85.8%

once

83.9%

wrappy

83.7%

JavaScript

newtonsoft.json

52.7%

sys.runtime.compilerservices.unsafe

26.7%

MS.web.infrastructure

24.7%

MS.codeanalysis.csharp

24.1%

sys.collections.immutable

23.3%

MS.ext.dependencyinjection.abstractions

22.5%

MS.ext.primitives

22.1%

sys.text.encoding.codepages

22.1%

MS.ext.logging.abstractions

22.0%

sys.identitymodel.tokens.jwt

21.6%

.NET

10

9

8

7

6

5

4

3

2

1

Ra
nk

Percent of applications using library

40%20% 80%60%

RANK #1

inherits
36 LINES OF CODE

The most commonly used JavaScript
library is inherits, located in npm.
This package is 36 lines of code,
which provides a thin wrapper around
the inherits functionality in the utils
submodule of node.js when available
and provides its own version when
that native module is not available.
It is thankfully free from flaws based
on current analysis.

RANK #7

isarray
4 LINES OF CODE

isarray is a scant four lines, doing exactly
what you might think it does (it enables
older versions of JavaScript to check if an
object is an array), while still being the
seventh most popular JavaScript package.
We are forced to ask if pulling all these
libraries that have to be managed by their
development teams is a decision that’s
been consciously thought through by
JavaScript developers.

RANK #2 RANK #3

debug ms
790 LINES 162 LINES
OF CODE OF CODE

The next two packages
in this list — debug and
ms — with 790 and 162
lines of code respectively,
both have published CVEs
related to denial of service
flaws. So even the smallest
packages, implementing
trivial functionality, can
have flaws, and may exist
deep in a dependency tree.

RANK #4

lodash
35,000+ LINES OF CODE

Among the top 10, only one —
lodash — is more than a few
dozen KB in size, while the rest
are less (and usually much less)
than 1,000 lines of code.

More than any of the languages we’ve looked at, JavaScript encourages
the creation and use of very, very, small libraries that do one task.
Looking at the top 10 libraries, this becomes painfully obvious.

12 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

0 2,000 4,000 6,000
Library count

Li
br

ar
y

ve
rs

io
n

0.0.0
0.1.0
0.3.0
0.5.0

0.7.0
0.9.0

0.11.0

0.25.0

0.99.0

1.0.0

1.1.0

1.3.0

1.5.0
1.7.0
1.9.0

1.11.0

1.12.0
1.15.0
1.20.0

1.99.0

2.0.0
2.1.0
2.3.0
2.5.0
2.7.0

2.12.0
2.21.0

3.0.0
3.1.0
3.3.0
3.5.0
3.9.0

3.19.0

4.0.0
4.2.0
4.6.0

5.0.0

5.2.0

6.0.0

7.0.0

8.0.0

9.0.0
10.0.0
11.0.0
12.0.0

17.9%
of libraries used have
major version of 0

17.4%
of libraries used have a
major version greater than
or equal to 4

35,000
version strings with the format 1.11.x (representing
various libraries in Amazon’s Java AWS SDK)

1,300 unique 1.0.x library version strings

Figure 3 Library versions

13STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Libraries — very numerous —
many versions — wow

4 For more on semantic versioning (SemVer), see semver.org

5 We kept thinking of this gem from XKCD (xkcd.com/927/)
when wrestling with this problem.

6 A fancy way of saying “rapid.”

 Sure, there are
those super popular
libraries. However,
we expect many of
our readers may be
asking about the
versions of these
and other libraries.
This natural question
unfortunately doesn’t
have a simple answer.

Most libraries use some form of semantic versioning,4
using x.y.z formatting to denote major(x) and minor(y)
versions. Things get a little strange after that, with some
libraries using the third value (z) as a patch number, while
others use it as a sequential build number. Some libraries
eschew major and minor versions altogether, just using
sequential build numbers from start to finish. And of
course, in an effort to make data scientists like us insane,5
many use some combination of custom version numbers.

We examine the landscape of these versions in Figure 3.
The vertical axis includes all library versions that could be
parsed as an x.y.z version string. Each spike represents the
number of libraries with any particular version string.

MAJOR VERSION SPIKES

This figure presents an interesting overall pattern. Major
releases (those in the x.0.0 format) represent the largest
spikes, with an exponential6 decay through successive
minor versions. The major version spikes themselves also
decay slowly, with only about 17 percent of libraries having
a major version number greater than 4.

PRE-RELEASE LIBRARIES

Also of interest is the number of libraries that have
pre-release version numbers (that is, they have a major
version number of zero, i.e., 0.y.z). Nearly 18 percent of all
scanned libraries are marked as pre-releases, indicating
that they may have reduced testing, documentation, and
overall rigor compared with major releases.

https://semver.org/
https://xkcd.com/927/

14 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Dependency types
 An application’s

attack surface is
not limited to its
code and the code of
packages developers
explicitly include.
Libraries themselves
have their own
dependencies.7

These libraries that are included indirectly are transitive dependencies,
and they can cascade into much more code being included in an
application than a developer anticipated. Understanding how many
libraries “come along for the ride” can be important in identifying where
flaws might enter an application. Since they’re not explicitly included by
developers, a large proportion of transitive dependencies can represent
attack surface that is below the surface visibility of maintainers.
This hidden dependency debt represents an additional, and perhaps
unexpected, workload for the ongoing vetting and maintenance
of an application.

In Figure 4, we look at where applications commonly pick up their
dependencies, by language. For each language, we look at each
application and determine how the library came to be included.

7 And those second-order dependencies can have their own dependencies. It’s turtles all the way down…

If the application has most (more than
66 percent) of its dependencies from explicit
calls, we count that in the direct category.

If the application has relatively few (less
than 33 percent) explicitly linked libraries
and instead picks up most of its library
baggage from those transitive calls, we
place it in the more transitive category.

And what if the application is relatively
split between direct and transitive sources?
You guessed it — the application is counted
as balanced.

DIRECT

TRANSITIVE

BALANCED

15STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

23.9%

7.4%

2.9%

1.0%

12.6%

24.3%

16.1%

43.7%

89.7% 9.3%

42.7% 33.5%

34.9% 57.7%

10.2% 86.9%

6.5% 80.9%

33.8% 41.9%

2.2% 81.7%

49.8% 6.5%

JavaScript

Ruby

PHP

Java

Python

Go

Swift

.NET

Percent of applicationsFigure 4 Library dependency types by language

Apps with more
direct dependencies

Apps with more
transitive dependencies

Balanced

It’s important to keep in mind that being more transitive as opposed to
direct isn’t necessarily a bad code smell8 by itself. Our goal is to help show
which languages may have unintended consequences for maintainers.
An application that picks up most of its dependencies via second, third,
or even greater degrees of separation from a developer’s explicit instruction
increases the difficulty of managing those dependencies.

The dominance of transitive applications in the JavaScript segment is
an effect of the large number of interdependencies between libraries in
that ecosystem, and the preponderance of tiny, single function, libraries.
While a few applications have purely direct dependencies, most have a
large percentage of secondary (and tertiary and more!) dependencies.
Languages like Go, Java, and Python have more even distributions among
applications, while .NET is a standout with most applications having few
transitive dependencies.

THE TAKEAWAY

JavaScript, Ruby, PHP, and Java
have most of their attack surface
from transitive inclusions that
developers need to ensure they
are managing.

8 For more on code smells, see Martin Fowler’s Refactoring: Improving the Design of Existing Code

16 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

2
Flaws in Open
Source Libraries
18 Flaw prevalence in libraries by language
20 Are certain types of flaws more important than others?
22 Prevalence of the OWASP top flaws by language
24 Libraries with public proof-of-concept exploits
26 OWASP and exploitability

Chapter 2

17STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

2 Just like every cowboy
sings a sad, sad song
Every rose has its thorn.
Poison, “Every Rose Has Its Thorn”

Given the open source library usage we’ve seen
previously, what effect does this have on the security
posture of our applications? What are the nature and
variety of flaws (thorns) in the garden of our libraries
(roses)? To answer this question, we first need to
understand how likely any particular library is
to have a flaw.

“

18 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Flaw prevalence in
libraries by language
 In Figure 5, we provide a breakdown — by language –

of the average number of flaws found in flawed
libraries, compared with the percentage of libraries in
that language that contain a flaw.

Keep in mind that if a library has multiple
versions that are in common use, that library
can be counted multiple times. Given that
most libraries are rarely at their best at
all times and many applications don’t use
bleeding-edge libraries, we feel this is an
accurate representation of the world as
most developers experience it.

As the percentage of libraries containing a
flaw increases, it becomes more important
to be aware of — and to be able to manage —
flawed libraries. For instance, if you pick any
random PHP library, it more than likely has a
flaw. That’s especially important with PHP as
it’s such a common application for server-side
web applications and, therefore, frequently
exposed to a large threat community.

We’ve highlighted four
languages as having particularly
illustrative values.

#1 Swift
#2 PHP
#3 .NET
#4 Go

But not all flaws are equal. Some
security issues are relatively exotic
or difficult to exploit while others
may be much more significant to
their application. It’s this sorting
of the zebras from the horses to
which we now turn.

19STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

.NET (n=43k)

Go (n=12k)

Java (n=196k)

JavaScript (n=191k)

PHP (n=21k)

Ruby (n=33k)

Python (n=24k)

Swift (n=2.5k)

0

1

2

3

4

5

6

7

0% 20% 30% 50%10% 40% 60%

Percent of libraries with a flaw

Fl
aw

 d
en

si
ty

 (fl
aw

s
pe

r l
ib

ra
ry

) o
f l

ib
ra

rie
s

w
ith

 fl
aw

s

LANGUAGE #3

.NET
Contrast Swift with .NET, which manages
an impressively low percentage of
flawed libraries on a population that
is over 17 times larger than Swift.

LANGUAGE #1

Swift
Swift, with its specialized use in the
Apple ecosystem, has the highest
density of flaws, but it has an overall
low percentage of flawed libraries.

LANGUAGE #2

PHP
Compared with Go, PHP has
an even higher rate of flawed
libraries and over double the
density of flaws in a given library.

Figure 5
Flaw prevalence in
libraries by language

LANGUAGE #4

Go
Go has a high percentage
of libraries with flaws, but an
overall low number of flaws
per individual library.

20 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Are certain types of flaws more
prevalent than others?

 Software weaknesses may be categorized according
to their Mitre Common Weakness Enumeration9 (CWE).
CWEs provide a comprehensive hierarchy of every way
software can be wrong and, as a whole, is daunting.
Thankfully, a more focused categorization exists —
the Open Web Application Security Project (OWASP)
Top 10 flaws.10

We’ll use the OWASP
Top 10 as a common
lens into the nature
of vulnerabilities
we’ve detected,
with two caveats:

Figure 6 examines the categories of all discovered flaws across all
libraries. We see that Cross-Site Scripting leads the pack, with the insecure
deserialization and broken access control categories also making up
a substantial portion of all flaws. Security misconfiguration represents a
tiny fraction of flaws, which is unsurprising as most libraries don’t expose
direct configuration — but instead rely upon the calling application code
to handle configuration and deployment.

While Cross-Site Scripting and access-control issues are ones that many
developers are familiar with treating, the insecure deserialization category
— coming in at number two — is worth talking about in more depth. This
category is an interesting member of our vulnerability fashion show.

9 For more information on CWE, see cwe.mitre.org

10 While originally designed for web applications,
we can map between CWEs and these categories
for a more condensed view of flaw types, see
cwe.mitre.org/data/definitions/1026.html.

1.

The logging category is one we see
very little of at the library level.

2.

The known vulnerability category
is self-referential.

https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/1026.html

21STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

23.5%

29.1%

20.3%

8.8%

7.8%

7.4%

2.7%

0.6%A6-Security Misconfiguration

A4-XML External Entities (XXE)

A2-Broken Authentication

A3-Sensitive Data Exposure

A1-Injection

A5-Broken Access Control

A8-Insecure Deserialization

A7-Cross-Site Scripting (XSS)

THE TAKEAWAY

Cross-Site Scripting, insecure deserialization,
and access control issues represent three out
of every four flaws found in libraries.

Figure 6 Categories of discovered flaws across libraries

In the State of Software Security:
Volume 10, we found insecure
deserialization was a relatively rare
flaw among in-house applications
(ranking 8th out of 10). Having such
a high ranking when looking at libraries
is troubling as this category of flaws
can result in unexpected code paths
being executed, which means that
portions of libraries that we are not
even intending to use may be inserted
into the execution path of their hosting
applications through use of this flaw.

Our next step is a more
fine-grained view of
these categories across
different languages.

22 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Prevalence of the OWASP
top flaws by language
 We know that

there’s quite a
bit of variation
among languages in
the numbers and
locations of the
flaws in their
libraries, so
perhaps you can
anticipate what
we see below with
the differences
in the prevalence
of the OWASP top
flaw categories.

In Figure 7, we’re now looking at how often these OWASP
top flaws categories appear across various languages. The
percentages in each tile reflect how many of the libraries
in each language’s ecosystem have a flaw from a given
category. We suggest looking at bands of relatively heavy
shading both horizontally — showing categories that are
common across languages — and vertically — showing
languages that have relatively high levels of OWASP top
flaws overall.

SCANNING ACROSS LANGUAGES

Scanning across languages, PHP unfortunately stands out
starkly, with over 40 percent of libraries in this popular
language having Cross-Site Scripting issues. Broken access
control and authentication — the number two and three
categories for PHP — are also more prevalent here than
in any other language.

SCANNING ACROSS FLAW TYPES

Switching to a horizontal look for common flaw types,
Cross-Site Scripting is common across all languages,
while our number two category from Figure 6, insecure
deserialization, is found commonly only in PHP and Java.11
Interestingly, broken access control nudges out Cross-Site
Scripting for the top area of concern for users of .NET
and Go’s libraries.

11 The large number of libraries in these two languages is what brings
this category so high in our overall rankings.

23STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

A8-Insecure Deserialization

A7-Cross-Site Scripting (XSS)

A6-Security Misconfiguration

A5-Broken Access Control

A4-XML External Entities (XXE)

A3-Sensitive Data Exposure

A2-Broken Authentication

A1-Injection

Go Java JavaScript .NET PHP Python Ruby

3.4% 1.7% 2.5% 2.9% 18.6% 6.3% 7.8% 0.0%

0.0% 0.7% 0.2% 0.0% 1.2% 0.0% 0.0% 0.0%

11.0% 10.5% 11.6% 8.4% 40.1% 13.3% 13.9% 0.0%

0.0% 7.6% 0.0% 0.4% 17.4% 0.9% 1.5% 0.0%

4.9% 6.9% 1.9% 1.9% 21.3% 6.5% 3.2% 0.2%

0.0% 5.9% 0.0% 0.5% 0.1% 1.6% 0.5% 0.2%

8.0% 2.1% 0.6% 8.8% 4.6% 2.6% 1.4% 6.1%

10.7% 8.9% 4.9% 14.8% 22.5% 9.4% 8.0% 7.7%

Swift

#1 LANGUAGE

PHP
With its high overall rate of flaws,
PHP shows up with Cross-Site Scripting,
access control, and authentication flaws.

#1 FLAW

Cross-Site Scripting
Cross-Site Scripting is the most common
type of flaw across almost every language.

Figure 7
Prevalence of OWASP top flaws
in libraries by language

24 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Libraries with public
proof-of-concept exploits
 Many organizations

prioritize treating
flaws based upon the
availability of public
proof-of-concept
(PoC) exploits.

As code becomes available to demonstrate in practical terms that a flaw can
be leveraged to exploit a codebase, the probability of that flaw being used
for harm is generally agreed to be higher.12 With our understanding of how
prevalent flaws are across languages and in what quantity, we now look at
how frequently those flaws have PoC exploits. For this data, we partnered
with Kenna Security to obtain numbers on both the availability of PoC and,
as we’ll see later, the detection of those PoCs being used in the wild.

In Figure 8 we see that just over one-fifth of all libraries have a publicly
published PoC exploit. There’s quite a bit of variability by language. The figure
demonstrates the percent of libraries with a flaw that also have a PoC exploit
published. Here we see some different messages emerging.

14.2%

15.7%

27.1%

13.9%

12.3%

6.5%

11.3%

11.3%

JavaScript

Python

Swift

Ruby

Go

.NET

Java

PHP

20.7% of all libraries
have a PoC exploit

RANK #8

JavaScript
JavaScript, despite its number of
included libraries, has a relatively small
percentage that have exploits published.

RANK #1

PHP
PHP maintains its uncomfortable
place in our spotlight with
27 percent of its flawed libraries
also having published exploit
code. We suspect this higher
percentage of PoC code for
PHP is related to its use in
web server applications, which
are a frequent focus of both
researchers and attackers.

Figure 8
Percent of flawed libraries
with a PoC exploit

12 The availability of PoC code is a component in both the CVSS (nvd.nist.gov/vuln-metrics/cvss/v2-calculator) and EPSS (www.kennaresearch.com/tools/epss-calculator/)
vulnerability scoring systems. Kenna also cultivates proof of concept information from a number of public data sources.

https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator
https://www.kennaresearch.com/tools/epss-calculator/

25STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

JavaScript Go

Ruby Python

Java PHP

Swift .NET

38.2%

56.7%

61.8% 43.3%

78.4%

21.6%

66.2%

33.8%

82.7%

17.3%

89.5%

10.5%

92.3%

7.7%

94.5%

5.5%

Figure 9 Percent of flawed libraries that have a CVE

Flaws that don’t have a CVE

Flaws that have a CVE

But not all libraries have CVEs.

We can take a look at Figure 9
to see that JavaScript libraries
are less likely to have a CVE than
libraries like PHP.

This means developers can’t only
rely on CVEs to understand library
flaws, and tools like Veracode’s
can help illuminate otherwise
hidden problems.

26 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

OWASP and exploitability
 We can further refine our focus by looking at those flaws

from the OWASP Top Flaws categories that also have public
proof-of-concept code.

To set the story for this part of our discussion,
we present Figure 10, which plots the percentage
of all libraries with an OWASP Top Flaw against the
percentage of libraries with a PoC for those flaws.

Here, we’ve highlighted three categories of the
OWASP Top Flaws for special attention. While
most of the top flaw categories are clustered in
the single digits for both prevalence in all libraries
and availability of proof-of-concept code, these
three pull away from their peers quite starkly.

A1-Injection

A2-Broken Authentication

A3-Sensitive Data Exposure
A4-XML External Entities (XXE)

A5-Broken Access Control

A6-Security Misconfiguration

A7-Cross-Site Scripting (XSS)

A8-Insecure Deserialization

0%

10%

20%

30%

20%0% 5% 10% 15%

Percent of libraries with flaw

Pe
rc

en
t o

f fl
aw

ed
 li

br
ar

ie
s

w
ith

 a
n

ex
pl

oi
ta

bl
e

fla
w

RANK #1 + #2

Insecure Deserialization +
Broken Access Control
These two categories have almost three times
the rate of public PoC. Remember that insecure
deserialization is almost entirely dominated
by PHP and Java, and you can see how this
information can be used to focus remediation
and management efforts.

RANK #3

Cross-Site Scripting
Our top category for absolute rate of
occurrence has a slightly higher percentage
of PoC availability, but not dramatically.

Figure 10
Percent of libraries with
an exploitable flaw

27STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

29 Applications with flaws in open source libraries
30 Do more libraries inevitability mean more problems?
32 The most concerning flaws are a rare breed
34 Relative prevalence of flaws by OWASP category

3Chapter 3

Implications
of Library Flaws
on Applications

28 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

There is a crack a
crack in everything
That’s how the
light gets in.
Leonard Cohen, “Anthem”

So far we’ve looked at the flaws present in
libraries as a whole, but now we can go up the
stack even further to look at the applications
themselves. After all, it is our applications
that we are trying to protect.

“

29STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

 Examining Figure 11,
we are presented with
a startling fact — most
(71 percent) applications
have a flaw in an open
source library when they
are first scanned.

 One important consideration is
exactly how a flaw is being included
in applications. As we saw in the
first section, this can vary widely
among applications. Figure 12 has the
answer — flaws are mostly induced from
transitive library dependencies.

Applications with flaws
in open source libraries

Those readers who recall the hundreds of
libraries included with many applications
may find this less startling. While this high
rate of flaws upon initial scanning is a
little concerning, we’ll try to moderate that
initial fear with some specific guidance on
treatment a little further on.

But surely developers are security conscious and are selecting
libraries that have fewer flaws? As data scientists, we don’t
stand on wishful thinking — no matter how tempting. We
performed an extensive review of the frequency that libraries —
both with and without security flaws — are found in applications
across all of our languages.

We found that flawed libraries don’t get used less; in fact,
they frequently get used more often. While there may be
distinct characteristics by which developers choose the libraries
they include, it doesn’t appear that security vulnerabilities is
one of them. Will that behavior persist after this report is in
the hand of developers? Time will tell!

Figure 11
Applications with flaws in an open source
library on first scan

Figure 12
How flaws in open source libraries are included
in applications

70.5%
With library flaws

29.5%
Without library flaws

40%

20%

0%

60%

80%

46.6%
Transitive

41.9%
Direct

11.5%
Both

30 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Do more libraries inevitably
mean more problems?
 It’s true that the

more libraries a
given application
includes, the more
flaws a developer is
going to introduce
on average.

In Figure 13, we look specifically at this relationship
across languages. The relationship between the expanding
scope of an application and the number of flawed libraries
used is unique for each language. The color indicates the
number of applications at a particular point on the chart.

JAVA, JAVASCRIPT, AND PYTHON

In particular, these three languages seem to have a
basic relationship that the more libraries an application
includes, the more likely flawed libraries will be included.
This seems to get exponentially worse as applications use
hundreds or thousands of libraries, with a particularly
high density of JavaScript applications including many
dozens of flawed libraries. Python bears a more direct
scaling relationship, with a flawed library being included
with roughly every 10 libraries used.

.NET

.NET is unique in the areas of highest density appearing
as a line of zero flaws along the bottom of the chart.

RUBY, PHP, GO, AND SWIFT

These four languages have sparser unique combinations,
but still show weak correlation among libraries and
flawed libraries.

On a positive note, we observe
that correlation is not fate.

Across all languages, we see applications
(in the lower right of any language in Figure 13)
that use hundreds (or, in the case of JavaScript,
thousands of libraries), with minimal or no
flawed libraries included. Complexity doesn’t
have to mean sacrificing security.

31STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Figure 13 Number of flawed libraries unique to each language

.NET

0

10

100

0 10 100 1,000

JAVA

0

10

100

0 10 100 1,000

JAVASCRIPT

0

10

100

0 10 100 1,000

0 10 100 1,000

PYTHON

0

10

100

Number of libraries in app

Nu
m

be
r o

f l
ib

ra
rie

s
w

ith
 fl

aw
s

in
 a

pp

Nu
m

be
r o

f l
ib

ra
rie

s
w

ith
 fl

aw
s

in
 a

pp

0 10 100 1,000

RUBY

0

10

100

0 10 100 1,000

GO

0

10

100

0 10 100 1,000

PHP

0

10

100

Number of libraries in app

0 10 100 1,000

SWIFT

0

10

100

32 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

The most concerning flaws
are a rare breed
 We’ve talked a lot about various types of flaws, when they occur

in libraries, and when those libraries are subsequently used in
applications. It’s clear there is a lot to worry about out there.
But in what order should we arrange our worry?

Developers are constantly
working to close flaws.

The flaws can be fixed by
hand or mitigated another
way. The presence of a flaw
in a library doesn’t mean
that the flawed bits will
be on the executable path
of the application. Moreover,
just because a flaw exists,
it doesn’t mean there is an
attacker raring and ready
to exploit it. So let’s examine
these things in order in
Figure 14.

Almost all scanned applications have an unfixed flaw
in an external library (97.4 percent of applications).

OPEN

 OPEN
+ POC

If we prioritize our focus on those flaws that have public
proof-of-concept code, the number of libraries we have
to contend with drops to just over half. But, wait! We can
do even better!

 OPEN
 POC
+ EXPLOITED

Just because a flaw has a public PoC doesn’t mean
attackers are using it. Our data on public proof of concepts
also notes whether attackers have attempted to exercise
that flaw in the wild.13 Filtering to those vulnerabilities
where an attack has been seen in-the-wild brings another
50 percent reduction, with just 25 percent of flaws now
in scope for our most critical attention. For most readers,
we would suggest this is the minimum viable population
of vulnerabilities to address first. But there is one more
layer we can explore, however.

 OPEN
 POC
 EXPLOITED
+ EXECUTABLE

Veracode Software Composition Analysis can check
whether the flawed parts of the library make it into the
application’s executable path. With this ultimate check
on a flaw with PoC, exploited in the wild, and present in
a given application’s execution chain, we’re now looking
at just a small 1 percent of flaws of highest priority. We
caution that being on an application’s execution chain is a
conservative one, only flagging a vulnerability as being on
the execution chain if there is a high degree of confidence
that this claim is accurate. This reasonable approach to
avoid false-positive alerts to developers means that this
estimate is likely on the low side.

13 Obviously, we can’t see every attack that is
attempted. But the data we borrowed from
Kenna gathers information from a variety
of sources to estimate what vulnerabilities
are being exploited in the wild. See the
previous references for more information.

33STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

97.4%

1.0%

Open

52.3%
Open + PoC

25.0%
Open + PoC + Exploited

Open + PoC + Exploited + Executable

40%

20%

0%

60%

80%

100%

THE TAKEAWAY

With a consistent hierarchy
of prioritization, the at-first
overwhelming number of flaws
can be reduced to something
that organizations can tackle.

Figure 14 Qualifying the flaws in open source libraries

Does this mean developers
should ignore all those
other third-party flaws?

Of course not! They could cause problems down the road, and attackers are
always expanding their book of tricks. Organizations and developers need to
choose how to focus their resources. We suggest looking at these characteristics
and deciding which heuristics work best for your own risk tolerances.

34 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

8

7

6

5

4

3

2

1

Ra
nk

in
g

Libraries with flaw

Injection

Broken Authentication

Sensitive Data Exposure

XML External Entities (XXE)

Broken Access Control

Security Misconfiguration

Cross-Site Scripting (XSS)

Insecure Deserialization

Applications with a library flaw

Injection

Broken Authentication

Sensitive Data Exposure

XML External Entities (XXE)

Broken Access Control

Security Misconfiguration

Cross-Site Scripting (XSS)

Insecure Deserialization

Applications with a library flaw
with a public PoC exploit

Security Misconfiguration

Injection

Broken Authentication

Sensitive Data Exposure

XML External Entities (XXE)

Broken Access Control

Cross-Site Scripting (XSS)

Insecure Deserialization

Relative prevalence of flaws
by OWASP category
 Before we think about the

best way to manage flaws
in open source libraries,
it’s instructive to
understand that the flaws
in libraries are not the
same as the flaws that end
up in applications and
that attacker focus can
be altogether different.

Figure 15 makes a comparison across these three categories. We start
on the left with a ranking of the most common OWASP categories
as they appear in all libraries that have flaws. As we’ve seen in our
previous sections, Cross-Site Scripting is at the top of the charts.

As we narrow our scope to just those applications with flaws that are
sourced from a dependency, the relative rankings shift — with insecure
deserialization and XML external entities rising markedly.

Becoming even more restrictive in our scope to looking just at
applications with flaws from libraries that also have a public proof
of concept exploit (those most urgent of flaws), we see a ranking that
mirrors our first-hand experience with application security teams, with
Cross-Site Scripting falling down the rankings in favor of issues resulting
from access-control issues.

THE TAKEAWAY

Insecure deserialization stays near the top, while XSS steadily
drops as we get closer to flaws more likely to be attacked.

Figure 15
Open source flaw types
by exploitability

35STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

37 Most fixes are minor
38 Fixes are present for the scariest OWASP flaws
39 A silver lining

4Chapter 4

Options for
Managing Library
Security Flaws

36 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Oh, there’s a lot
of opportunities
If you know when
to take them.
Pet Shop Boys, “Opportunities”

“

37STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

73.8%

Can be fixed
with update

26.2%

No update
available

40%

20%

0%

60%

80%

 Now that we understand how libraries are used and in what ways
they may contribute to security issues, we’re ready to tackle
guidance on how to manage this important area.

While a simple call to “update all libraries,
everywhere” may sound great (especially to
some of our auditor friends), the practical
limitations ignored in that simple statement
are well-known. But if keeping everything up
to date at all times is more of an aim than an
achievable goal, how can you prioritize your
efforts to still achieve good risk management?

THE TAKEAWAY

Most flaws have fixes
available. Things are
getting fixed… at least
in the libraries.

THE TAKEAWAY

Most of the required security
updates to libraries are small and
(presumably) non-breaking changes.

Most fixes are minor

With Figures 16 and 17, we see that most (nearly 75 percent) of
the known flaws can be fixed with an update. That’s great news
— these are bugs with an available solution! That message gets
even better when we factor in that most of the security flaw
fixing updates are minor revisions or even just patch revisions.
These minor and patch updates generally do not change APIs
(if semantic versioning rules are being followed) and are some
of the least disruptive for application developers to apply.

18.7%

Major version

38.1%

Minor version

40.9%

Patch

2.2%
Revision

Figure 16 Percent of library flaws with an available update Figure 17 Types of updates available for library flaws

38 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Fixes are present
for the scariest
OWASP flaws

 This good news gets even better
when we look at the high fix rate
of library developers for some
of the ‘scariest’ flaws.

In Figure 18 below we show some of those top
OWASP categories along with the percentage of
those flaws that have a fix in a published version.
This story is encouraging, with nearly 90 percent of
broken access control flaws able to be corrected with
a published update. This is crucial as it is the second
most likely flaw to be included in an application
where a PoC exploit exists.

50.4%

96.4%

52.2%

73.8%

89.7%

33.3%

89.9%

65.6%

A6-Security Misconfiguration

A1-Injection

A3-Sensitive Data Exposure

A8-Insecure Deserialization

A4-XML External Entities (XXE)

A5-Broken Access Control

A7-Cross-Site Scripting (XSS)

A2-Broken Authentication

Figure 18 Percent of flaws with available fixes

THE TAKEAWAY

Most of the most important library
flaws in the Top 10 OWASP categories
have fixes available.

39STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

A silver lining
 Let’s check back in with those

most concerning flaws we talked
about previously.

That is those flaws we discussed as having
public PoC exploits that have evidence of
being used in the wild and that are on an
application’s executable path.

These are certainly complicated beasts, and
it’s unlikely they can be fixed with a simple
update… right? Figure 19 says otherwise, in fact
it shows that those 90 percent of those most
concerning 1 percent of flaws can be fixed with
an update to the library.

0%

20%

40%

60%

80%

100%

90.7%

Fixed with
an update

9.3%

No update
to fix available

Figure 19
Percent of open flaws on executable path
with exploit in the wild

THE TAKEAWAY

Over 90 percent of the
highest priority security
flaws have a fix available
to them today!

40 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

Conclusion +
Recommendations

41STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

When you reach
the bottom line
The only thing
to do is climb.
The Bottom Line, “Big Audio Dynamite”

If software is eating the world,14 then security
flaws in software are perhaps the unpleasant
indigestion. Writing software is now a team activity,
with collaboration happening across the globe —
whether those team members are within a single
organization or encompassing the vibrant open
source community.

As work patterns have had to adapt to the global
economy, so too must our security management
practices. Open source software gives companies
tremendous advantages, but there’s no free
lunch here, and all code must be managed to
avoid your own contributions (whether open
or closed source in nature) from exposing your
users to vulnerabilities.

“

14 Andreessen, Marc. “Why software is eating the world.”
Wall Street Journal 20.2011 (2011): C2.

42 STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

So what’s the bottom line?

What should our
developer readers
be acting upon?
Our recommendations
focus on awareness. AWARENESS THAT:

AWARENESS THAT:

AWARENESS THAT:

Open source software has a surprising,
and surprisingly variable, number and
type of software flaws.

The attack surface of many
applications — due to the
transitive dependency
phenomenon — is much
larger than developers
may expect.

There are fixes for these issues,
if developers are aware of them
and take the time to apply them.

+

+

+

43STAT E O F S O F T W A R E S ECU R I T Y: O P E N S O U RC E E D I T I O N

AWARENESS THAT:

AWARENESS THAT:

Language selection does make a
difference — both in terms of the size
of the ecosystem and in the prevalence
of flaws in those ecosystems.

Most of these fixes are relatively minor
in nature, suggesting that this problem
is one of discovery and tracking,
not huge refactoring of code.

+

+

Learn more about managing
your open source risk.

http://www.veracode.com/products/software-composition-analysis
http://www.veracode.com/products/software-composition-analysis

Veracode is the leading AppSec partner for creating secure software, reducing
the risk of security breach and increasing security and development teams’
productivity. As a result, companies using Veracode can move their business,
and the world, forward. With its combination of automation, integrations,
process, and speed, Veracode helps companies get accurate and reliable
results to focus their efforts on fixing, not just finding, potential vulnerabilities.

Veracode serves more than 2,500 customers worldwide across a wide range
of industries. The Veracode cloud platform has assessed more than 14 trillion
lines of code and helped companies fix more than 46 million security flaws.

Copyright © 2020 Veracode, Inc. All rights reserved. All other brand names, product names, or trademarks belong to their respective holders.

LEARN MORE

www.veracode.com

Veracode Blog

Twitter

